Using the Plotter
class¶
Description¶
The Plotter
class aims to provide a framework, which can be used to
handle default values and collect common codeblocks needed for different plotting
frameworks. The Plotter
class is a base class that should be subclassed
for different Plotting backends. See MatplotlibPlotter
or BokehPlotter
for examples.
The subclass provides a dictionary of all the keys that should be handled by the
plotter class. The Plotter class provides a hierarchy of overwriting these parameters
(Higher numbers take precedence).
Function defaults set with
Plotter.set_defaults()
withdefault_type='function'
Global defaults set with
Plotter.set_defaults()
Parameters set with
Plotter.set_parameters()
The subclasses should then also provide the plotting backend specific useful code snippets. For example showing colorbars, legends, and so on …
For a list of these functions you can look at the respective documentation
(MatplotlibPlotter
or
BokehPlotter
)
Writing a plotting function¶
In the following we will go through a few examples of how to write a simple plotting
function using the Plotter
class. We will be focusing on the
MatplotlibPlotter
, but all of this is
very similar for other plotting backends.
Local instance¶
Even though the Plotter
class is meant to be used globally or on the module
level, it can also be useful locally for simplifying simple plotting scripts. Here we have
a example of a function producing a single plot with the given data for the x and y
coordinates.
def plot_with_defaults(x,y,**kwargs):
from masci_tools.vis.matplotlib_plotter import MatplotlibPlotter
#First we instantiate the MatplotlibPlotter class
plot_params = MatplotlibPlotter()
#Now we process the given arguments
plot_params.set_parameters(**kwargs)
#Set up the axis, on which to plot the data
ax = plot_params.prepare_plot(xlabel='X', ylabel='Y', title='Single Scatterplot')
#The plot_kwargs provides a way to get the keyword arguments for the
#actual plotting call to `plot` in this case.
plot_kwargs = plot_params.plot_kwargs()
ax.plot(x, y, **plot_kwargs)
#The MatplotlibPlotter has a lot of small helper functions
#In this case we just want to set the limits and scale of the
#axis if they were given
plot_params.set_scale(ax)
plot_params.set_limits(ax)
plot_params.save_plot('figure')
return ax
import numpy as np
x = np.linspace(-1, 1, 10)
y = x**2
#Some examples
plot_with_defaults(x, y)
plot_with_defaults(x, y, limits={'x': (0,1)})
plot_with_defaults(x, y, marker='s', markersize=20)
Show code cell output
<Axes: title={'center': 'Single Scatterplot'}, xlabel='X', ylabel='Y'>
Global/Module level instance¶
The local instance already gives us reusable code snippets to avoid common pitfalls when
doing matplotlib/bokeh plots. But when instantiating the Plotter
class locally
we have no way of letting the user modify the global defaults.
However, when handling global state we need to be careful to not leave the instance of
the Plotter
class in an inconsistent state. If an error is thrown inside the
plotting routine the parameters would stay set and may lead to very unexpected results.
For this reason every plotting function using a global or module level instance of these
plotters should be decorated with the ensure_plotter_consistency()
decorator.
This does two things:
If an error occurs in the decorated function the parameters will be reset before the error is raised
It makes sure that nothing inside the plotting routine changed the user defined defaults
Let us take the previous example and convert it to use a global instance
from masci_tools.vis.matplotlib_plotter import MatplotlibPlotter
from masci_tools.vis.parameters import ensure_plotter_consistency
#First we instantiate the MatplotlibPlotter class
plot_params = MatplotlibPlotter()
#The decorator needs to get the plotter object
#that is used inside the function
@ensure_plotter_consistency(plot_params)
def plot_with_defaults(x,y,**kwargs):
#Now we process the given arguments
plot_params.set_parameters(**kwargs)
#Set up the axis, on which to plot the data
ax = plot_params.prepare_plot(xlabel='X', ylabel='Y', title='Single Scatterplot')
#The plot_kwargs provides a way to get the keyword arguments for the
#actual plotting call to `plot` in this case.
plot_kwargs = plot_params.plot_kwargs()
ax.plot(x, y, **plot_kwargs)
#The MatplotlibPlotter has a lot of small helper functions
#In this case we just want to set the limits and scale of the
#axis if they were given
plot_params.set_scale(ax)
plot_params.set_limits(ax)
plot_params.save_plot('figure')
return ax
import numpy as np
x = np.linspace(-1, 1, 10)
y = x**2
#Some examples
plot_with_defaults(x, y)
plot_params.set_defaults(marker='s', markersize=20)
plot_with_defaults(x, y, limits={'x': (0,1)})
plot_with_defaults(x, y)
Show code cell output
<Axes: title={'center': 'Single Scatterplot'}, xlabel='X', ylabel='Y'>
The Plotter.set_defaults()
method is exposed in the two main modules for
plotting masci_tools.vis.plot_methods
masci_tools.vis.bokeh_plots
as
the functions masci_tools.vis.plot_methods.set_mpl_plot_defaults()
and
masci_tools.vis.bokeh_plots.set_bokeh_plot_defaults()
specific to the plotter
instance that is used in these modules.
Function defaults¶
Some functions may want to set function specific defaults, that make sense inside the
function, but may not be useful globally. The following example sets the default
linewidth
for our function to 6
.
Note
Function defaults are also reset by the ensure_plotter_consistency()
decorator, when the plotting function terminates successfully or in an error
from masci_tools.vis.matplotlib_plotter import MatplotlibPlotter
from masci_tools.vis.parameters import ensure_plotter_consistency
#First we instantiate the MatplotlibPlotter class
plot_params = MatplotlibPlotter()
#The decorator needs to get the plotter object
#that is used inside the function
@ensure_plotter_consistency(plot_params)
def plot_with_defaults(x,y,**kwargs):
#Set the function defaults
plot_params.set_defaults(default_type='function', linewidth=6)
#Now we process the given arguments
plot_params.set_parameters(**kwargs)
#Set up the axis, on which to plot the data
ax = plot_params.prepare_plot(xlabel='X', ylabel='Y', title='Single Scatterplot')
#The plot_kwargs provides a way to get the keyword arguments for the
#actual plotting call to `plot` in this case.
plot_kwargs = plot_params.plot_kwargs()
ax.plot(x, y, **plot_kwargs)
#The MatplotlibPlotter has a lot of small helper functions
#In this case we just want to set the limits and scale of the
#axis if they were given
plot_params.set_scale(ax)
plot_params.set_limits(ax)
plot_params.save_plot('figure')
return ax
import numpy as np
x = np.linspace(-1, 1, 10)
y = x**2
#Some examples
plot_with_defaults(x, y)
plot_params.set_defaults(marker='s', markersize=20)
plot_with_defaults(x, y, limits={'x': (0,1)})
plot_with_defaults(x, y)
Show code cell output
<Axes: title={'center': 'Single Scatterplot'}, xlabel='X', ylabel='Y'>
Passing keyword arguments directly to plot calls¶
The plotter classes have a restricted set of keys that they recognize as valid parameters.
This set is of course not complete, since there is a vast number of parameters you can set
for all plotting backends. In our previous examples unknown keys will immediately lead to
an error in the call to Plotter.set_parameters()
. To enable this functionality
we can provide the continue_on_error=True
as an argument to this method.
Then the unknown keys are ignored and are returned in a dictionary. Additionally you can
explicitly bypass the plotter object if you provide arguments in a dictionary with the
name extra_kwargs
it will be ignored, unpacked and returned along with the unknown
keys
Warning
Be careful with the this feature and especially the extra_kwargs
, since there is
no check for name clashes with this argument. You might also run into situations, where
arguments of different names collide with arguments provided by the Plotter
from masci_tools.vis.matplotlib_plotter import MatplotlibPlotter
from masci_tools.vis.parameters import ensure_plotter_consistency
#First we instantiate the MatplotlibPlotter class
plot_params = MatplotlibPlotter()
#The decorator needs to get the plotter object
#that is used inside the function
@ensure_plotter_consistency(plot_params)
def plot_with_defaults(x,y,**kwargs):
#Set the function defaults
plot_params.set_defaults(default_type='function', linewidth=6)
#Now we process the given arguments (unknown ones are returned)
kwargs = plot_params.set_parameters(continue_on_error=True, **kwargs)
#Set up the axis, on which to plot the data
ax = plot_params.prepare_plot(xlabel='X', ylabel='Y', title='Single Scatterplot')
#The plot_kwargs provides a way to get the keyword arguments for the
#actual plotting call to `plot` in this case.
plot_kwargs = plot_params.plot_kwargs()
ax.plot(x, y, **plot_kwargs, **kwargs)
#The MatplotlibPlotter has a lot of small helper functions
#In this case we just want to set the limits and scale of the
#axis if they were given
plot_params.set_scale(ax)
plot_params.set_limits(ax)
plot_params.save_plot('figure')
return ax
import numpy as np
x = np.linspace(-1, 1, 10)
y = x**2
#The key markerfacecolor is not known to the MatplotlibPlotter
plot_with_defaults(x, y, markerfacecolor='red', markersize=20)
Show code cell output
<Axes: title={'center': 'Single Scatterplot'}, xlabel='X', ylabel='Y'>
Multiple plotting calls¶
The plotter classes also provide support for multiple plotting calls with different data
sets in a single plotting function. To enable this feature we need to set two properties
on the Plotter
; single_plot
to False
and num_plots
to the number
of plot calls made in this function. The plot specific parameters can then be specified
in two ways. Shown behind the two ways is the way to set the color of the second data set
to red
.
List of values (
None
for unspecified values)[None,'red']
Dict with integer indices for the specified values
{1: 'red'}
Unspecified values are replaced with the previously set defaults.
Note
The num_plots
and single_plot
properties are also reset by the
ensure_plotter_consistency()
from masci_tools.vis.matplotlib_plotter import MatplotlibPlotter
from masci_tools.vis.parameters import ensure_plotter_consistency
#First we instantiate the MatplotlibPlotter class
plot_params = MatplotlibPlotter()
#The decorator needs to get the plotter object
#that is used inside the function
@ensure_plotter_consistency(plot_params)
def plot_2lines_with_defaults(x,y,**kwargs):
plot_params.single_plot = False
plot_params.num_plots = 2
#Set the function defaults
plot_params.set_defaults(default_type='function', linewidth=6)
#Now we process the given arguments (unknown ones are returned)
kwargs = plot_params.set_parameters(continue_on_error=True, **kwargs)
#Set up the axis, on which to plot the data
ax = plot_params.prepare_plot(xlabel='X', ylabel='Y', title='Single Scatterplot')
#The plot_kwargs provides a way to get the keyword arguments for the
#actual plotting call to `plot` in this case.
#For multiple plots this will be a list of dicts
#of length `num_plots`
plot_kwargs = plot_params.plot_kwargs()
ax.plot(x[0], y[0], **plot_kwargs[0], **kwargs)
ax.plot(x[1], y[1], **plot_kwargs[1], **kwargs)
#The MatplotlibPlotter has a lot of small helper functions
#In this case we just want to set the limits and scale of the
#axis if they were given
plot_params.set_scale(ax)
plot_params.set_limits(ax)
plot_params.save_plot('figure')
return ax
import numpy as np
x = np.linspace(-1, 1, 10)
y = x**2
y2 = x**3
#The key markerfacecolor is not known to the MatplotlibPlotter
plot_2lines_with_defaults([x,x], [y,y2])
plot_2lines_with_defaults([x,x], [y,y2],
color={1:'red'}, linestyle=['--',None])
Show code cell output
<Axes: title={'center': 'Single Scatterplot'}, xlabel='X', ylabel='Y'>
Custom function specific parameters¶
You might have situations, where you want to have some function specific parameters, that should pull from the previously set defaults or even a custom default value.
The Plotter.add_parameter()
method is implemented exactly for this purpose.
It creates a new key to be handled by the plotter class and with the arguments
default_from
or default_value
we can specify what the defaults should be.
default_value
sets a specific value, default_from
specifies a key from the
plotter class from which to take the default value.
The plot_kwargs()
method
then can take keyword arguments to replace the arguments to take with your custom
parameters
Note
These added parameters live on the function defaults and parameters level, meaning
they will be removed by the ensure_plotter_consistency()
decorator after
the function finishes
from masci_tools.vis.matplotlib_plotter import MatplotlibPlotter
from masci_tools.vis.parameters import ensure_plotter_consistency
#First we instantiate the MatplotlibPlotter class
plot_params = MatplotlibPlotter()
#The decorator needs to get the plotter object
#that is used inside the function
@ensure_plotter_consistency(plot_params)
def plot_shifted_with_defaults(x,y,**kwargs):
#Set the function defaults
plot_params.set_defaults(default_type='function', linewidth=6)
plot_params.add_parameter('linestyle_shifted',
default_from='linestyle')
#Now we process the given arguments (unknown ones are returned)
kwargs = plot_params.set_parameters(continue_on_error=True, **kwargs)
#Set up the axis, on which to plot the data
ax = plot_params.prepare_plot(xlabel='X', ylabel='Y', title='Single Scatterplot')
#The plot_kwargs provides a way to get the keyword arguments for the
#actual plotting call to `plot` in this case.
plot_kwargs = plot_params.plot_kwargs()
ax.plot(x, y, **plot_kwargs, **kwargs)
#This call replaces the parameter linestyle with our custom
#parameter linestyle_shifted
plot_kwargs = plot_params.plot_kwargs(linestyle='linestyle_shifted')
ax.plot(x, y+2, **plot_kwargs, **kwargs)
#The MatplotlibPlotter has a lot of small helper functions
#In this case we just want to set the limits and scale of the
#axis if they were given
plot_params.set_scale(ax)
plot_params.set_limits(ax)
plot_params.save_plot('figure')
return ax
import numpy as np
x = np.linspace(-1, 1, 10)
y = x**2
plot_shifted_with_defaults(x, y)
plot_shifted_with_defaults(x, y, linestyle_shifted='--')
Show code cell output
<Axes: title={'center': 'Single Scatterplot'}, xlabel='X', ylabel='Y'>
Nested plotting functions¶
More complex plotting routines might want to call other plotting routines to simplify their
structure. However, this has a side-effect when working with the Plotter
class and the ensure_plotter_consistency()
decorator. Since the decorator
resets the parameters and function defaults after a plotting function has been called
you lose everything that you might have modified in the enclosing plotting function.
If you do need access to these parameters after calling a nested plotting function
the NestedPlotParameters()
contextmanager is implemented. It defines a
local scope, in which a plotting function can change the parameters and function defaults.
After exiting the local scope the parameters and function defaults are always in the same
state as when the with
block was entered (Even if an error is raised). The nested
plotting function will also start with the state that was set before.
Usage is shown here:
from masci_tools.vis.matplotlib_plotter import MatplotlibPlotter
from masci_tools.vis.parameters import ensure_plotter_consistency
from masci_tools.vis.parameters import NestedPlotParameters
#First we instantiate the MatplotlibPlotter class
plot_params = MatplotlibPlotter()
@ensure_plotter_consistency(plot_params)
def nested_plot_function(x, y, **kwargs):
plot_params.set_defaults(default_type='function',
linewidth=10, linestyle='--')
#The contextmanager also needs a reference to the plotter object
#to manage
with NestedPlotParameters(plot_params):
ax = plot_with_defaults(x,y,**kwargs)
#Will plot with the above set defaults
plot_kwargs = plot_params.plot_kwargs()
ax.plot(x, y+2, **plot_kwargs)
plot_params.save_plot('figure')
return ax
@ensure_plotter_consistency(plot_params)
def plot_with_defaults(x,y,**kwargs):
#Set the function defaults
plot_params.set_defaults(default_type='function', linewidth=6)
#Now we process the given arguments
plot_params.set_parameters(**kwargs)
#Set up the axis, on which to plot the data
ax = plot_params.prepare_plot(xlabel='X', ylabel='Y', title='Single Scatterplot')
#The plot_kwargs provides a way to get the keyword arguments for the
#actual plotting call to `plot` in this case.
plot_kwargs = plot_params.plot_kwargs()
ax.plot(x, y, **plot_kwargs)
#The MatplotlibPlotter has a lot of small helper functions
#In this case we just want to set the limits and scale of the
#axis if they were given
plot_params.set_scale(ax)
plot_params.set_limits(ax)
return ax
import numpy as np
x = np.linspace(-1, 1, 10)
y = x**2
nested_plot_function(x, y)
nested_plot_function(x, y, linewidth=1)
Show code cell output
<Axes: title={'center': 'Single Scatterplot'}, xlabel='X', ylabel='Y'>